
Test Data Filtering

A. Rennoch, J. de Meer, I. Schieferdecker

GMD Fokus, TIP
Kaiserin-Augusta-Allee 31, D-10589 Berlin

www.fokus.gmd.de/tip

Abstract: The paper discusses the need of test data filtering within tra-
ditional conformance testing methodology and advanced QoS data
stream controlling. The common approach is the introduction of a data
profile declaration. This profile declaration is useful for the (semi-)au-
tomatic generation of e.g. TTCN data constraints or object interface fil-
ters. The B-ISDN ATM Adaptation layer specification Type 1 is used
as an application example in both application areas.

Keywords: Conformance testing, stream controlling, TTCN, ODL

1 Introduction

Standardized Conformance Test Suites consist of three major parts:

(a) the test behaviour sequences,

(b) the data structure and type definitions, and

(c) the data value constraints, i.e. the concrete description of test data to be sent (selected val-
ues) to the IUT and to be received (expected values) from the IUT.

A lot of effort has been undertaken to automize the generation of test suites by means of formal
descriptions of the so-called System under Test (SUT). Notice, SUT is a notion of the ODP Con-

formance Testing Methodology [7] which describes the compound system in which the imple-
mentation to be tested resides. From a practical point of view there exists long-term experience
with commercial tools [1] on automatic generation of test behaviour from formal specifications,
e.g. FSM based [5]. Work has been done also on developing mapping rules from formal data
type specification written in SDL [2] or ODL [3] to TTCN or ASN.1 respectively. Unfortunate-
ly less support is available on developing constraints on data for test case generation.

Practical experiences in test suites development projects at our FOKUS test suite factory group
show that especially this part of the test suite is important for the variety of test cases. Looking
at today’s test suites a lot of test cases are similar in behaviour but differ in the handling of data,
e.g. only one parameter component differs only by one distinct value. The whole range of the
value space of a parameter normally is not required to be tested. Tool support in the develop-
ment of data constraints to avoid exhaustive data type testing consists currently only in the gen-
eration of an empty TTCN constraint skeleton, i.e. a constraint table which includes the
component (TTCN field) names (with comments) and the data type, but not any coded data val-
ues.

The derivation of a set of significant test data from the unconstrained set of all test data (due to
the value definition space) could be understood as a process of test data filtering. An infinite
number of possible test data is due to the infinity number of elements in some data components,
e.g. integer fields in PDUs or ASPs. Then we have to filter some test data used for the test cases
(see Figure 1). In addition to this filtering of test data for test suite development we have taken
a similar view on data filtering in the context of QoS measurements and controlling of contin-
uous data streams [4]. In the latter case we have to specify which cells of a data stream have to
be considered for QoS testing. Also, a test data filter is needed to distinguish stream elements
selected for QoS controlling from those traffic elements which must not be considered in the
QoS control process. From the technical point this view is similar to the idea of TTCN data con-
straints for observing test events which allow the identification and distinction of incoming da-
ta. In this context we put emphasise on receiving continuous streams and an integration of the
constraint specification within the object interface definition.

In the following we have to distinguish between the logical description of a data filter, called
‘profile’ and the instantiations of the profile in (TTCN) test data constraints or its usage at
stream interfaces. Both approaches make use of data (structure) type definitions and the pro-
files. The instantiation of profiles take place in the context of (TTCN) test suite development
only.

test data filtering

conformance tests

set of constraints

continuous stream control

(cell) data filters
at object interfaces

 Figure 1: Different views on test data filtering

with profiles

Section 2 presents various concepts for the definition of profiles. In sections 3 and 4 we apply
these concepts to an example in the context of ATM, the B-ISDN ATM Adaptation layer spec-
ification Type 1, whereas section 3 integrate the ideas into TTCN and section 4 addresses the
control of cell streams by the profile.

2 Profile declaration concepts

This section presents a series of abstract concepts needed to describe a profile for a data filter.
Each of the concepts could be applied to a field or substructure of a data type. In each of the
rules a data type field or data substructure get one or more instantiated rules assigned. We will
use the following syntax for our rules:

EXPLANATION:

Data type field name : PROFILE,

for TTCN data structures and more abstract:

Substructure name : PROFILE.

The filtering of test relevant data addresses the question of how to restrict data value spaces by
constraints. The theoretical data value space results from all combinations of values of all in-
volved parameters. By the specification of appropriate constraints the value space becomes dra-
matically reduced. State of the art e.g. provided by the ASN.1 notation is explicit enumeration
of the encoded values of the data type.

First we want to restrict the range of value intervals and to limit value lists, e.g. we map a value
set to a restricted range or subsets:

(1) RANGE:
Field1 : [1.0, 2.0],
i.e. if Field1 is of type Real, only real numbers between 1.0 and 2.0 are possible.

(2) SUBSET:
Field2 : (2, 4, 6, ...),
i.e. if Field2 is of type Integer, only even integers are possible.

Further we need possibilities to predefine a limited number of discrete values instead of unlim-
ited value sets.

(3) VALUELIST:
NetworkAddress : (1.2.3, 1.4.6)
i.e. the network address space is limited to two specific addresses 1.2.3 and 1.4.6.

It must be noted that this approach has already been applied in the context of validating formal
specification in order to reduce the number of environment signals [2].

The explicit fixing of data values reduces massively - in the sense of ASN.1 - the amount of
possible data constraints on ‘protocol data units’ (PDUs) or on ‘abstract service primitives’
(ASPs) and hence, leads to a smaller set of data value combinations. In the context of testing
some parameters, e.g. network transit lists (i.e. address values out of an unlimited address
space), can not be restricted. They are subject of the testing environment, i.e. they have to be

regarded as parameters to the test, and therefore part of a PICS (protocol implementation con-
formance statement) or PIXIT (protocol extra information for testing) document. For this case,
we propose to mark the test suite parameters before the test data constraint development starts.
In the test data constraint development process we have to consider one variable instead of an
(unrestricted) value space of the definition set (with lots of values) of the parameter.

(4) PROFILE PARAMETER:
Field1 : tsp_param1,
i.e. the value space for Field1 is mapped to one profile parameter tsp_param1.

Often, we can observe that test data constraints differ in one parameter value only. The test case
purpose (i.e. the subject of a test case body) is focusing on testing one parameter (say: one data
constraint field value) only, e.g. a limiting value or an invalid value. We propose to mark such
special values before the test data constraint development process starts. This should remind test
suite developers or any (semi-) automatic test data development tool to consider such special
values and to produce appropriate data constraints to be used in test case behaviour. In such
complex sub-structured test data constraints need to be copied, the (sub-)constraints are to be
renamed (i.e. new cross-references are necessary) and the single modified test data values have
to be introduced, e.g.:

(5) SUBSTRUCTURES:
PDU1.Parameter3.Field2.Subfield1 : 5,

i.e. the integer value 5 is required in the specified PDU sub-field. This should lead to an indi-
vidual data constraint in addition to a basic set of value combinations due to the other profile
rules.

Further the specification of the test data restrictions could be supported using a random selection
of a number of valid or invalid (i.e. values which are not within the definition set of the corre-
sponding data type) value:

RANDOM SELECTION:

(6) Field1 : ANY

(7) Field2 : TAKE n

(8) Field3 : TAKE n INVALID.

We intend to implement some kind of control program which takes a profile declaration and de-
livers a set of test data constraints to be used within test case behaviour. Profile declarations
could be considered as some intermediate form between encoded data (TTCN send constraints)
on one side and data structure definitions (general TTCN receive constraints which allows ‘any’
or ‘not present’ only) on the other side.

Due to complex structure of some PDUs the presence of (sub)fields might depend on field val-
ues or the presence of other (sub)fields. For this reason we need an introduction of crossrefer-
ences with the semantics of ‘if’ and ‘exclude’, e.g.:

CONDITIONAL SELECTION:

(9) Field1 : IF Field2 = ’1’,
i.e. Field1 is present only if Field2 has the value ‘1’.

(10) Field3 : EXCL Field4,
i.e. Field3 is present only if Field4 is not included.

We have to notice a distinction between the constraints for sending data units and those of re-
ceiving data units. In case of receiving data units unconstrained fields will get the ANY value
and would not cause the generation of the variety of constraints with the different values al-
lowed by the field data type.

Looking at current TTCN (part 3 of [7]) we found language concepts to restrict integer values
to ranges, value lists and even complementary value sets. Test suite developers may also use the
ANY, OMIT and ANYorNONE features instead of values and could use all these suite opera-
tions defined in the test suite but no means for an explicit restriction of the amount of values and
value dependencies. To our knowledge fourthcoming versions of TTCN will not address con-
straint specifications compared to our proposal.

3 TTCN Test data constraint generation example

The data structure of AAL1 cells is simple and should serve as a first example. AAL1 PDU con-
sists of a PDU header (2 x 4 bits), a pointer field (1 octet) and the payload field (46 octets) [6].
The structure of a convergence sublayer PDU with pointer information (CS_PDU_P) is present-
ed in Table 1.

An example profile declaration for the AAL1 cell is given in the Figure 2. In contrast to standard
TTCN we prefer to collect all statements on data selection in one table instead of using so many
sub-constraints for subfields even if the data type definition is more substructured. Therefore
we need means to reference subfields. In our example we have used the ‘dot‘-notation proposed
in the rule 5 (see above). For simplification we omit the current field names, i.e. we use ‘.Seq-
Count‘ instead of ‘SN.SeqCount‘. The reference for CRC and EvenParity must be interpreted
as test suite operations.

With the profile declaration as presented in Figure 2 we solve four final AAL1 data constraint
specifications for sending data units (see Figure 3). This is due to the fact that with the exception

Field name length

PDU
header:

SN CSI 1 bit

SeqCount 3 bits

SNP CRC 3 bits

Parity 1 bit

Pointer Parity 1 bit

Offset 7 bits

Payload 46 octets

Table 1: AAL1 PDU structure CS_PDU_P

of the SN components all the other subfields SNP, Pointer and Payload could take one value
only. The corresponding specification is either explicitly for Payload (TAKE 1) and implicitly
for the subfield of SNP and Pointer due to the reference of test suite operations (EvenParity,
CRC) or the usage of a test suite parameter (tsp-offset). The final value for these subfields de-
pends on the corresponding test suite operation results and the related test suite parameter. But
both SN subfields allow two values: SN.CSI has not been restricted, i.e. the subfield type has
two values (‘0’B and ‘1’B) and SN.SeqCount is explicitly restricted by TAKE 2.

Due to the usage of TAKE n there is no explicit value declaration for SN.SeqCount and Payload,
i.e. some values have to be selected at random from a default value list.

Considering the generation of TTCN data constraints for receiving data units we may derive one
single constraint declaration from the profile declaration example given in Figure 2. In this con-
text there will be no difference to the sending of data units w.r.t. the usage of test suite opera-
tions and test suite parameters. But we will generate ANY constraints (“*”) for data fields with
undefined values, i.e. SN.CSI, SN.SeqCount and Payload, instead of using TAKE n.

 Figure 2: A profile declaration example

4 An interface profile notation

We want to extend a model that considers already continuous data streams and performance
characteristics by the approach of specifying data type profiles, respectively test data con-
straints. Whereas data type profiling is related to the filtering technique applied to streams, data
constraining is a value set reduction technique preferably used in testing. The notational ap-
proach QuiteIDeaL of specifying “Object Interface Declarations” (the language is a superset of

ITU-T’s ODL notation) adopts from the TTCN inherent data type specification notation ASN.1
the concept of constraining value sets. This concept has been improved by the approach of fil-
tering profiled data or even profiled behaviour. Hence, profiling is suitable for both, the filtering
of specified data or events from a stream and the reduction of possibly infinite data sets or be-
haviour to practically handable sets.

A declaration of ASN.1 test data type supports - for the purpose of restricting large data sets -
the use of specific constraints. These constraints however, are rather primitive. One can explic-
itly specify the coded pattern of a data value one is looking for or, unrestricted data. This is al-
ready similar to a very primitive filter. All the data which does not coincide with the specified
constraints, is allowed to pass, respectively will not be tested. Similar, as constraints in terms of
ASN.1, a profile constrains the possibly infinite set of data, simply by augmenting the declara-
tion of the data type at an interaction point by the profile. An activated filter can use the profile
for several purposes, i.e. either to wait for the occurrence of the profiled data value or to check
more sophisticated, conformance rules against the passing data. Filters are also useful for pro-
viding statistics, e.g. counting the number of occurrences of specific data values.

For the purpose of testing it would be extremely convenient if these filters could be used by the
testing machine for test relevant data observations, instead of annoying generation of test data

Profile declaration

datatype definition

individual constraints

 Figure 3: Data constraint generation

manual

constraint
generator

(with substructures)

Protocol standard

values mostly done by hand. Thus, QuiteIDeaL supports the declaration of appropriate profiles

and filters at an object’s interface. Considered from the point of testing methodology these fil-
ters are very tiny testers distributed to interfaces where needed. The filters may interact with a
test coordinator which might further be able to program the policy of testing ran by the filters.
Where no filter can be implemented at the interfaces, the profiles are still useful to derive lim-
ited test data value sets.

In Figure 4 the syntax of a data type specification improved by the notion of ‘auxiliary tools’ is
presented. Auxiliary tools could either apply the old ASN.1 style of specifying constraints to
data types, or the improved notation of applying QuiteIDeaL data type profiles. These profiles

can be applied by filters plugged-in at an object interface. In order to improve expressiveness
to performance constraints, filters might use tools such that as timers or counters in addition to
data type profiles for the elaboration of statistical information. A filter may realize a certain pol-
icy for the selection of test relevant data, e.g. to achieve a certain coverage of tested data type.

The QuiteIDeaL options for profiling data types are in their effects comparable to the examples

applicable to TTCN which are presented in the sections before. With the exceptions of value
ranges and enumeration of values, i.e. value list, the various options are represented in terms of
expressions of prepositional logics. For example, the constraint specification rule (6) ‘Field1:
ANY’ of the category ‘random selection’ is specified by the QuiteIDeaL profile expression of

.

This expression is equivalent to the meaning: “take any one value from the valid set of type
SeqCount_type and assign it to field SeqCount”. Notice the sign ‘#’ counts the number of selec-
tions of values from type SeqCount_type”. Similar, the conditional selection constraint specifi-
cation rule (9) is translated into the QuiteIDeaL profile expression of

,

which means: “take some n values from the valid set of type Payload_type and assign them to
field Payload, provided field SeqCount contains the value 1”.

The identifiers SeqCount and Payload are the identifiers of entries in the larger data structure
declaration CS_PDU_P. This data structure is a parameter of an interface operation. Figure 5

dt_spec ::= PCO send/receive_ indicator pdu_type auxiliary_tools

auxiliary_tools ::= QuiteIDeaL_filters | ASN.1_constraint

QuiteIDeaL_filters ::= policy(dt_profile [statistic_tools])

ASN.1_constraint ::= coded_value | any_value

dt_profile ::= range | enumeration | expression

 Figure 4: Data Type Profiling Concepts

SN .SeqCount_profile{ x SeqCount_type∈() #SeqCount 1=() }∧

Payload_profile{ SeqCount 1=() x Payload_type∈() #Payload = n() }∧→

contains an example interface specification that includes data type declarations augmented with
profiles. The profiles are separated from the basic ODL data type declaration by the keyword
‘profile’ and are referred to by names. At an additional part of the interface specification the
concrete profile declarations are to be specified. In Figure 5, the profile declaration capability
has been added to the type declaration clause of ODL. The profile declarations are useful for
reducing the amount of unconstrained typed test data. Active filters inserted at object interfaces
are parameterized by profiles and can thus control various flows of data, i.e. either to extract
them from the flow or to let them pass.

5 Conclusion

The introduction of (test) data profiles to identify subsets for relevant (test) data instead of con-
sidering unlimited data value spaces has been proposed. We have defined basic profile rules
which are meaningful in the context of test data constraint generation and data stream control-
ling.

Filters allow to shrink huge amounts of data to a handsome amount. By parameterization filters
with flexible profiles, the same filter is able to realize varying testing policies. In order to control
or to test distributed systems, filters and data type profiles must be able to be placed at adequate
locations. These locations are the interfaces of distributed objects. Consequently, we have im-
proved ITU-T’s notation for object declarations ODL by compatible concepts to specify behav-
iour at “points of control and observations” (PCOs) augmented with filters referring to data type
profiles.

Implementing some tool support for TTCN test data constraint generation is expected to speed
up the development of basic TTCN test cases. We plan to implement such a prototype of the
constraint generator in the next future to identify further needs for the profile declaration rules.

An additional topic in this project is the expansion of the constraint generation approach to per-
formance constraints as defined in PerfTTCN [8] and QuiteIDeaL [4].

interface AAL1 {

typedef struct CS_PDU_P { SeqCount_type SeqCount profile SN.SeqCount_profile;
Payload_type Payload profile Payload_profile; ...}

typedef boolean SeqCount_type;
typedef octet Payload_type;

profiledef SN.SeqCount_profile {...}
profiledef Payload_profile {...}

...}

 Figure 5: Interface Data Type Declaration with Profiles

6 References

[1] M. Schmitt, A. Ek, B. Koch, J. Grabowski, D. Hogrefe: Autolink - Putting SDL-based test
generation into practice. In: A. Petrenko, N. Yevtushenko: IWTCS volume 11, Tomsk
(Russia), August 1998.

[2] Telelogic: TAU manuals, version 3.4, Malmö (S) 1998.

[3] M. Li, I. Schieferdecker, A. Rennoch: Testing the TINA retailer reference point.
ISADS’99, Tokyo, March 1999.

[4] J. de Meer, A. Rennoch, A. Puder: Towards a QoS binding notation. In: H. König, P. Lan-
gendörfer: FBT’98, Cottbus, June 1998.

[5] Q. Tan, A. Petrenko: Test generation for specifications modelled by I/O automata. In: A.
Petrenko, N. Yevtushenko: IWTCS volume 11, Tomsk (Russia), August 1998.

[6] ITU-T: B-ISDN ATM Adaptation Layer specification: Type 1 AAL, Recommendation
I.363.1, 1996.

[7] ISO: Conformance Testing Methodology Framework, ISO 9646, 1992.

[8] I. Schieferdecker, B. Stepien, A. Rennoch: PerfTTCN, a language extension for perform-
ance testing. In: M. Kim, S. Kang, K. Hong: IWTCS volume 10, Cheju Island (Korea),
September 1997.

